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An RPA-LDA treatment of density fluctuations in the alkali 
metals Na and Cs 
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Kernforschungszentrum Karlsruhe, lnstilut F~ Nukleare FestkBrperphysik. PO Box 3640, D- 
76128 Karlsruhe, Germany 

Received 20 October 1994, in final form 13 January 1995 

AbstracL We calcul~te the density fluctuation spectra of the alkali metals Na and Cs in the RPA 
approximation. using KKR band structure data, The Coulomb part of the K mabix is augmented 
by a local exchange and wmlation term derived from the LDA. In the case of Na we find well 
defined plasmon excitations in the wave vector range below qc 5 0.5 (du) whose positions and 
widlhs are in reasonable agreement with experiment. In accordance with the features of its band 
shllcture the density response of Cs is more complicated. Nevertheless we find low-frequency 
peaks whose positions and widths could be interpreted as plasmon-like excitations. 

1. Introduction 

The frequency- ana wave-vector-dependent density correlation function of a metal is 
an important quantity, influencing various equilibrium and non-equilibrium properties. 
Theoretical results may be directly compared to experiment, because electron energy loss 
spectroscopy (EELS) measures the imaginary part of the real space double Fourier transform 
of this function, called the density fluctuation spectrum in the following. 

Its theoretical treatment is an intricate many-body problem involving substantial 
approximations for the single-particle propagator and the electron-hole irreducible K matrix 
entering the Bethe-Salpeter equation. In the absence of any analogon to the Migdal theorem 
of phonon theory or a small parameter suggesting some kind of perturbational approach, it 
is hard to give an a priori justification of any approximation used in applications to realistic 
systems. We lay, however, stress on treating the problem from first principles, avoiding 
the introduction of parameters and taking account of the lattice structure of the system in 
question. 

As a first approach an RPA-like treatment, based on KKR band Structure, seems reasonable 
to us. From local density functional theory (LDA) we derive a K matrix consisting of the 
sum of the Hartree term and a local exchangecorrelation part. This approximation may be 
shown to be charge conserving. 

In a recent application to the transition metal V for the case of small wave vectors 
(Winter 1993 and references therein) we have demonstrated that this kind of approximation 
can describe significant features revealed by EELS experiments: even in the wave vector 
regime where continuum theories would predict weakly damped plasmons, the fluctuation 
spectrum as obtained by RPA-LDA exhibits a broad distribution with its maximum position 
at 21 eV, in agreement with experiment. Theory shows that this behaviour is caused by the 
presence of the crystalline lattice and the strong deviation of the Bloch states from plane 
waves. In order to achieve a still more detailed agreement, especially in the low-frequency 
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regime, the evaluation of the polarization function beyond the electron-hole bubble diagram 
would be required. 

In the case of the alkali metals the principal questions are as follows. What is the wave 
vector range of plasmon-like excitations? Is the RPA-LDA able to describe their positions 
and widths reasonably, though, at variance with the transition metals, we are dealing here 
with systems of low electronic density? Is there any substantial difference between the 
behaviour of the light and the heavier alkali metals? 

There have been important developments during the last few years in the theory of the 
density response of the alkali metals. Quong and Eguiluz (1993) present a first-principles 
method in the frame of the RPA and the TDLDA amounting to including the derivative of the 
exchange and correlation potential in the kernel of the BetheSalpeter equation. Using a 
scheme that avoids direct summation over unoccupied bands and employing a plane wave 
basis set they evaluate the density response of Na and Al. Aryasetiawan and Karlsson 
(1994) evaluate the energy loss spectra of the alkali metals within the RPA using a band 
structure method derived from the LMTO. In their calculations they replace the 6 function 
in the imaginary part of the dielectric function by a Gaussian. Zaremba and Sturm (1991) 
calculated the non-local dielectric function of the alkali metals in the region of the p core 
excitation threshold. 

In spite of the fact that our present work is similar to that of Aryasetiawan and Karlsson 
(1994) we find it worthwhile to discuss it here, because our results have been independently 
obtained using a different band structure method. Some differences in the results show 
the great sensitivity of the theoretical density fluctuation spectra on the details of their 
evaluation. 

In the following we concentrate on Na and Cs. An account of these results has already 
been given (Kollwitz and Winter 1994). This paper is organized as follows. In section 2 
we discuss our KKR band structure results. In section 3 we show some relations visualizing 
the connection between band structure and density response. Section 4 is devoted to the 
presentation of the RPA-LDA dielectric functions and in section 5 we discuss our results for 
the density fluctuation spectra. We close with a summary in section 6. 

2. The band structures of Na and Cs 

We performed self-consistent scalar relativistic KKR band structure calculations for BCC Na 
and Cs using the lattice constants 4.225 A and 6.045 A, respectively, and for the exchange 
correlation potential the expression derived by Hedin and Lundqvist (1971). The energy 
ranges (2.5 Ryd for Na and 1.2 Ryd for Cs) contain 20 energy eigenvalues. For their 
application to the density correlation function they have been evaluated on a mesh of 5000 
IC points in the irreducible wedge of the Brillouin zone (BZ). The Bloch state coefficients 
have been determined for angular momenta up to 1 = 5 and the formula of Ham and Segall 
(1961) has been worked out numerically to gain the Bloch wave functions on a dense mesh 
of points in the interstitial region of the unit cell. The single-particle states constructed 
in this way are sufficiently continuous across the muffin tin sphere radius and fulfil the 
boundary conditions on the surface of the unit cell to guarantee the mutual orthogonality 
of different wave functions within 1% accuracy. This degree of quality of the eigenstates 
is a necessary requirement for the realistic evaluation of the matrix elements entering the 
theory of the density response. 

The fundamental differences between the band structures of Na and Cs may best be 
seen by comparing their density of states (DOS) curves (figure 1 and figure 2 for Na and Cs, 
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respectively.) At low energies they start with a parabolic shape due to the existence of the 
lowest occupied valence band. Their deviations from free-electron-like behaviour, especially 
near the BZ boundary, is clearly visible through humps in the DOS curves. Whereas the Fermi 
energy of Na (EF = 0.231 Ryd) falls into the freeelectron regime, giving rise to a fairly 
spherical Fermi surface, substantial deviations from the freeparticle behaviour are effective 
on the Fermi level of Cs (EF = 0.1388 Ryd) whose Fermi surface is markedly anisotropic. 
For Na we obtain ~ ( E F )  = 6.49 states Ryd-'/atom and the values of the partial DOS are 
~O(EF) = 2.55, ~ , ( E F )  = 3.29, n&) = 0.60 and n3(&~) = 0.05. The corresponding 
numbers for CS are ~ ( E F )  = 20.32, n o ( E F )  = 8.85, ~ { ( E F )  = 4.55, n 2 ( E ~ )  = 6.81 and 
n3(&~) = 0.17. In the case of Na the average shape of the unoccupied part of the ws curve 
is similar to a freeelectron parabola. The observed structure is due to the fact that the total 
DOS is a superposition of rather sharply peaked contributions from the individual bands 
whose energy ranges overlap (the broken lines in figure l(u)). The same statements hold 
for the angular-momentum-resolved partial densities of states whose smoothened energy 
dependence is essentially free-electron-like (figure l(b)). 

In sharp contrast to the behaviour of Na, individual bands or groups of a few bands 
give rise to pronounced and distinctly separated peaks in Cs: the structure between 0.2 and 
0.3 Ryd is due to bands 2 and 3, whereas bands 4-6 cause the peaks in the energy range 
between 0.3 and 0.48 Ryd (the broken lines in figure 2(u)). These bands are predominantly 
of d character. Above 0.5 Ryd the f character (bands 7-20) becomes more and more 
important (figure 2(b)). This profound variance in the band structures of Na and Cs can 
be expected to cause important differences between the density fluctuation spectra of these 
two substances. In particular, the features of the unoccupied bands of Cs, showing rather 
transition-metal- than free-electron-like behaviour, may lead to-strong damping of plasmon 
excitations for wave vector lengths well below the critical value for Landau damping 
resulting from continuum models. 

These band structure results are in close agreement with those of, e.g., Ham (1962), 
Kenney (1964) and Papaconstantopoulos (1986) in the case of Na covering an energy range 
of 1.5 Ryd and with those of Kenney (1967), Lawrence (1971) and Papaconstantopoulos 
(1986) in the case of Cs extending up to 0.5 Ryd. 

3. Formalism 

The Bethe-Salpeter equation for the response functions in the RPA-LDA approximation may 
be derived by applying external fields to the Dyson equation for the one-particle band 
structure Green function, g, and evaluating its change, Sg, to first order. In the case of 
the density response we consider the perturbation caused by the scalar space and time- 
dependent potential O(r .  t ) .  The Dyson equation for g reads 

with 

In setting up equations (1) and (2) we neglect relaxation and retardation effects, that is we 
assume the same dependence of the effective one-particle potential, V ,  on the density as in 
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 
energy (ev) 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 
energy (ev) 

Figure 1. The density of states of Na. (a) The total DOS (solid line) as B sum of the contributions 
from lhe individual bands (broken lines). (b)  Contributions of individual angular momenta to 
the total DOS. , ...... 1 =o;- --, 1 = 1;- .-, 1 =2; .. . . , 1  =3 .  
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equilibrium. Linearizing equation (l), we obtain for the change, 68, of g 

G g ( r t .  ~ ' t ' )  = 

M Kollwitz and H Winter 

drl  dtIg,,(rr, ~ l t l ) g n ( ~ i t i ,  ~ ' t ' )@(~ i .  t i )  

(3) 

s 
+ d r ~  dtl dr2gn(rt, T I ~ I ) ~ ~ ( T ~ ~ I ,  r't')K(ri, rz)6n(rz, ti) s 

with 

K ( T I ,  rd = 8 V ( r t ) / 6 n h ) .  (4) 

The Fourier wansform of the equilibrium Green function, g., reads in terms of the Bloch 
states, q k ~ ,  and the energy eigenvalues E ~ L  

Equation (5) involves summation over the bands A and integration over the Brillouin zone 
of volume QBZ. 

Relating the density response, 6n, to the perturbation, @, through the relation 

-s  (6) 6n( r .  t )  = T8g(rt, rt ) - dr'dt'xd(rt, r't')@(r', t') 

and using equation (3), we obtain the following integral equation for the Fourier transform 
of the density correlation function, xd:  

1 
I 

x d ( r ,  r'; w )  = XP(T, r'; 0) + J d v  drzxP(p, TI ;  ~ ) K ( T I ,  rdxd(rz ,  r'; 0). (7) 

In our applications we work with the lattice Fourier transforms of the spacedependent 
quantities. In this representation the non-interacting susceptibility, xp, reads in terms of the 
one-particle Green function 

Here, p and p' are local coordinates in the vicinities of sites 7 and r' and the wave vectors 
q are restricted to the first BZ. The following form of the lattice Fourier transform of the K 
matrix has been derived by Winter (1993): 

with 
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and 

f$Z,,,,r(Pr* P'r') = [8r/(u + ~)I" ' /P ' '+')@(P'  - P )  + (P"/P'+')@(P - ~ ' ) ) G ~ r & S m m , .  

The site off-diagonal part, Kc.', of the Coulomb interaction, which is proportional to l/q2 
for small wave vectors, is separable with respect to its space arguments. This is not the case 
for the on-site Coulomb term Kc,' and the local expression for the exchange and correlation 
part Kxc. Corrections to formula (9) existing in regions with 

Ip+p'I> IR+T-T'I 

( R  is any lattice vector) lead to errors in the Fourier transform of KC below 1% and can 
safely be neglected. 

The form of K displayed in equation (9) suggests dividing the problem of solving 
the BetheSalpeter equation for xd into two steps. We introduce the auxiliary function f 
through the following equation: 

2&r, p'r') = x,P(pr, d r ' ;  0) 

dpi dpz x,P(pr, mri; o)KC, ' (p f r~,  p2n)2&2zZ, p'r'; 0). (10) + E l  
Equation (IO) can be solved for ff exploiting the separability of its kernel. The geomewy 
of the interstitial region is thereby rigorously taken into account. More details, concerning 
this point, are given in the appendix. To evaluate xd the following equation remains to be 
solved 

(11) 

In equation (1 1) we introduced the symbol Knsep for the sum of the on-site Coulomb and 
the exchangecorrelation term. Equation (11) may be solved for xd by expanding the radial 
parts of the singlesite one-electron wave functions with respect to energy as described in 
previous work (Stenzel and Winter 1986). Second-order expansions proved sufficient in the 
present application. 

The real space double Fourier transforms discussed in the following sections are defined 
in terms of the lattice Fourier transforms in the following way: 

Instead of the correlation functions, x ,  the quantities commonly considered in the literature 
are the dielectric functions E and s-'. They are related to the x functions through the 
following relations: 

~ ( q ,  4; W )  = 1 - ( 8 ~ / q z Q u n i t ) ~ p ( ~ ~  q; 0) 

&-'(qv 9; W )  = 1 + ( 8 ~ / q ~ Q u o i t ) ~ ( q 3  9; 0). 

(13) 

(14) 

and 

Only in the case of a translationaily invariant system is E-' the inverse of E .  In  the following 
we present and discuss results for the dielectric functions. 
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4. The dielectric functions 

We employed our band structure results to construct the one-particle Green function using 
equations (5) and (8) and to evaluate the lattice Fourier transform of the dielectric function 
E as a function of frequency and the local real space coordinates for some wave vectors 
in the (1,O.O) direction. The way the BZ integrations hereby involved, including the k- 
and space-coordinate-dependent mahix element vectors, are handled has been described in 
previous papers (Stenzel and Winter 1986, Gotz and Winter 1993). For convenience we 
discuss the features of E by considering the real and the imaginary part of its real space 
Fourier transform &(q, q; U), as defined in equation (13). 

In figure 3 we show both the real and the imaginary part of the dielectric function of 
Na in its dependence on frequency for different wave vectors q. According to equations (5) 
and (8) it consists of the sum of matrix-element-weighted transitions between the occupied 
part of band 1 and the unoccupied part of band 1 (intraband contributions) on the one 
hand and the unoccupied bands (interband contributions) on the other. Also drawn are 
the individual contributions to Ims from transitions between bands 1 and n (1 < n < 6) 
and the sum of transitions from band 1 to bands 7-19. To emphasize their importance for 
the density fluctuation spectra some of them are multiplied by the factor l / q2  (those with 
n > 2 in  the case of q = 0.1 and those with n > 2 in the cases q = 0.2 and q = 0.3 
(du)). This factor compensates for the smallness of the involved interband matrix elements 
squared, being roughly proportional to q2 at long wavelengths. Whereas for q < 0.1 (du) 
the intraband contribution is separated from the others by a small gap, it spreads out on 
increasing wave vectors, overlapping the energy ranges of an increasing number of interband 
transitions. It thereby loses height and its initial slope decreases. This leads to a decrease 
of the wave-vector-dependent static dielectric function. In agreement with the features of 
the DOS curve the individual interband contributions are sharply structured and in sequence 
of their energetic positions their amplitudes increase. This can lead to pronounced peaks 
in the total dielectric function as a glance at the curve for q = 0.6 (du) shows, where the 
@ansitions between bands 1 and 4 cause the spiky structure around 7.4 eV. This behaviour 
of the imaginary part is reflected in the Kramers-Kronig-related real part of &(q, q;  U). 
Whilst for small wave vectors it looks quite free-electron-like, important deviations from 
the free-electron shape become visible for q values > 0.3 (du), especially in the frequency 
range between 6 and 8 eV. where the plasmon-like excitations of the density fluctuation 
spectrum are expected to show up. 

The corresponding curves for Cs are displayed in figure 4. In this case the intraband 
contribution is very different from the free-electron picture even at small wave vectors. It 
is appreciably structured and shows a sharp band edge peak. This behaviour can be traced 
back to the fact that the Fermi level falls outside the parabolic part of the first band. For 
q < 0.15 (du) the contribution due to transitions between bands 1 and 2 is separated from 
the intraband contribution by a distinct gap. On increasing q the broadening of the intraband 
term leads to a merging of these two stmctures. Most striking is the high amplitude of this 
interband peak, which is caused by the nearness of important parts of the Fermi surface 
to the BZ boundary, where, due to their energetic vicinity, a mixing of characters between 
bands 1 and 2 occurs. The transitions to the higher bands lead to the individual peaks @artIy 
multiplied by factors l / q2  in the figures) in full compatibility with the properties of the DOS 
curve. They cause modulations in the shape of the dielectric function for frequencies above 
2 eV with important consequences for the RPA density fluctuation spectrum. Especially 
remarkable in this connection is the dip in the vicinity of U = 4.8 eV, caused by the 
separation between the complex consisting of bands 1-5 on one side and the higher bands 

M Kollwitz and H Winter 
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E 

3 

fraqYe"sy (ev) 

Fmre 3. The dielectric function, E ( q .  q: o), of Na for q in the (1,0,0) direction. The values 
of q are in units of k / e  (du). Real part: - - -. Imaginary part: total: -, individual 
contributions: . . . . . ., transitions from band 1 to band 1; - --  -, to band 2: - , -, to band 3: 
.. .., to band 4; - - -, to band 5; - , . -. to band 6, -. to bands 7-12. (a )  q = 0.1, 
(b)  q = 0.2, ( c )  q = 0.4, ( d )  q = 0.5. (e) q = 0.6. Those partial wntributions in the drawings 
with amplitudes larger Lhan the total imaginary part of E are multiplied by factors of 1/q2. 
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Figure 3. (Continued) 

on the other side. The curves for the real part of the dielectric function once again underline 
that Cs deviates substantially from the free-electron behaviour. 

5. The density fluctuation spectra 

We used the program sketched in section 3 to evaluate &-'(q, q; o) for the wave vector 
values q = 0.1, 0.2,0.3,0.4, 0.5 and 0.6 (du) in the case of Na and for the numbers q = 0.1, 
0.2, 0.3 and 0.6 (du) in the case of Cs. The q vectors pointed in the (1,0,0) direction. Other, 
less symmetric directions would not cause any additional problems, except for a moderate 
increase in CPU time, which, however, is irrelevant, because we optimized our codes to run 
them on an IBM-risc workstation. 

The evaluation of density fluctuation spectra demands a higher degree of accuracy at 
high frequencies than the otherwise similar problem of treating spin fluctuations. Since 
the Coulomb interaction is repulsive and diverges as l / q z  at small wave vectors, large 
amplitudes of Ime-' are found roughly at positions op fulfilling the condition 

Re+?, q;  up) = ReU - (8~/QunitqZ)xP(q,  q; 0)) = 0 

provided Im xP(q, q; wp) is not too big. These frequencies lie in general well above the main 
peaks of x p .  Especially at small wave vectors, Im xP(q, q;  q) is determined by interband 
transitions giving rise to amplitudes proportional to q2. The corresponding calculations 
therefore require special care including the treatment of interstitial regions. On the other 
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I 1 I I I I I I 

-30 I I I I I I I I 

0 1 2 3 4 5 6 7 

rrequency (ev) 

Figure 4. The dielecVic function. ~ ( q .  9: 0)  of Cs. The meanings of the CUNeS are the same 
a s i n t h e h e e o f f i g u r e 3 .  ( a ) q = O . l , ( b ) q = 0 . 2 , ( c ) q = 0 . 3 , ( d ) q = 0 . 6 ( d u ) .  
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hand, rapid variations with frequency are a genuine property of RPA dielectric functions, 
especially at energies near thresholds for transitions between particular pairs of bands, and 
are not caused by any kind of improper handling of the numerical problem. They may give 
rise to rather noisy structures in the RPA density fluctuation spectrum, which would probably 
be wiped out by any augmentation of the RPA. Only the gross features obtained writhin this 
approximation should therefore be taken seriously. 

Within a finite-wave-vector regime we find clear-cut plasmon-like excitations in Na, as 
figure 5 demonstrates. An appreciable amount of damping is, however, already present at 
small wave vectors. It is caused by the significance of umklapp scattering as a consequence 
of the lattice structure. This is remarkable in view of the fact that Na resembles a free- 
electron system in some aspects. The dispersion of these plasmons has a positive fourth- 
order term becoming perceptible for q values above 0.4 (du). The lifetime of the plasmons 
diminishes appreciably with increasing wave vector and, slightly above the critical value 
for Landau damping in a homogeneous electron gas (qc rr. 0.5 (du)), they dissolve into 
broad structures. The subpeaks in the curve for q = 0.6 (du) can be clearly traced back 
to features in the band structure (figure I )  and consequently in the spiky shape of the 
polarization function (figure 3) due to the interband transitions 1-4 and 1-5. The values for 
the theoretical positions and widths of the plasmons are displayed in table 1. The values of 
table I extrapolate to wp = 5.68 eV and r = 0.41 eV for q + 0. These numbers are very 
near to the experimental results wp = 5.72 eV (Kunz 1966) and 5.70 eV (Sueoka 1965, 
Kloos 1973). These authors observe a plasmon line width of 0.4 eV, also in good agreement 
with our findings. Our plasmon dispersion curve compares favourably to the measurements 
of vom Felde and coworkers (1989) with maximum deviations of 1.5%. 

In agreement with our findings Aryasetiawan and Karlsson (1994) obtain clear-cut 
plasmon peaks in their theoretical work. Their plasmon frequencies, starting at about 6 eV 
in the long-wavelength limit and rising to about 7.7 eV at q = 0.5 du, are somewhat above 
our values. The RPA calculations of Quong and Eguiluz (1993) for Na also yield plasmon 
excitations with energies at 6 eV for q = 0 and 7.9 eV at q = 0.5 du. Their TDLDA values 
for finite wave vectors are slightly lower (wp = 7.4 eV for q = 0.5 du). 

As can be expected from the band structure results and the characteristics of the dielectric 
function E, the RPA-LDA loss function Im&-'(q, q; w )  of Cs is not as simple as that of Na. 
In Cs the 5p  core levels are only about 0.6 Ryd below the bottom of the valence band 
and may thus influence the density fluctuation spechum appreciably even in the energy 
range of a few electronvolts. We therefore included the 5p core levels in our numerical 
evaluation of E-' on the same footing as the valence bands and show the results of these 
calculations in figure 6. Superimposed on a broad structure extending over the frequency 
range between 1 and 8 eV are distinct low-frequency peaks. Their positions wp vary from 
about 3.0 eV at q = 0.1 du to wp = 2.8 eV at q = 0.3 du. At q = 0.6 du the peak position 
has again reached the small-wave-vector value. Also striking is the existence of a second 
peak near 4.8 eV, which is rather pronounced at small wave vectors and levels off with 
increasing q, shifting to slightly smaller frequencies. At q = 0.6 du it is hardly visible any 
longer. As already indicated in the preceding section, it owes its existence to variations of 
the polarization function in this energy region between the upper edge of contributions due 
to transitions between band 1 and the band complex 1 4  on one side and the lower edge 
of contributions due to transitions between band 1 and bands 7-12 on the other side. It 
is interesting to remark that the band structure calculations of Papaconstantopoulos (1986) 
yield a dip in the DOS curve at the same energy position as ours do. The widths (full 
width at half height) increase continuously with increasing q, their values r being 0.8 eV 
at q = 0.1 du, 1.05 eV at q = 0.3 du and 1.4 eV at q = 0.6 du. In view of the shapes 

M Kollwitz and H Winter 
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of the curves it seems, however, somewhat problematic to define widths of plasmons. For 
comparison we also performed calculations disregarding the 5p core levels. In this case the 
height of the low-frequency peak is diminished in favour of the peak near 5 e V  and the 
amplitudes of the fluctuation spectrum between the peaks are increased. These observations 
clearly demonstrate the importance of the 5p core levels for the density response. 

0 1 2  3 4 5 6 7 8 9 10 

lrequenw (e9  

Figure 6. The imaginary part, &-'(q, q; U )  of the RPA-LDA density response of Cs for some 
g values in the (1.0.0) direction. -. q = 0.1, - ' -, q = 0.2, - . -, y = 0.3, - - -, 
y = 0.6. 

Table 1. Pasitions and widths of plasmon excitaiions in Na. 

Wave vector Peak position Width (WHH) 

0.1 5.71 0.54 
0.2 5.81 0.13 
0.3 5.985 0.84 
0.4 6.59 0.89 
0.5 7.04 1.05 

4 (du) oP (eV) r (ev) 

Our results may be compared to the EELS experiments of Kunz (1966), who measured 
E-' of Cs for zero momentum transfer, obtaining oP = 2.9 eV and r = 1.2 eV. His value for 
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up compares favourably with the position of our low-frequency peak at small wave vectors, 
whereas his r value is somewhat above ours. Vom Felde eral (1987) report on qdependent 
EELS measurements for Cs, observing strongly damped plasmons within an extended wave 
vector region. The plasmon dispersion derived from their experiments exhibits negative 
dispersion in the wave vector range 0 < q e 0.48 du. Their long-wavelength value of wp 
is 2.9 eV and the minimum at q = 0.48 du is 2.72 eV. For r they find 0.8 eV at small q 
rising linearly to r = 1.2 eV at q = 0.6 du. Our low-frequency peak shows qualitatively 
similar features. Its position for q = 0.3 du lies distinctly below that at q = 0.1 du. At 
variance with the experiment, however, it  has already reached the long-wavelength value 
near q = 0.6 du. Our r values are reasonably near to those of the experiment. 

The theoretical results of Aryasetiawan and Karlsson (1994), based on L M m  band 
structure and performed for wave vectors in the (1,l.O) direction, show plasmon peaks at 
positions some tenths of an electronvolt above ours, With increasing q they exhibit broad 
shoulders. Additional small peaks appear near 6 eV. The peak near 4.8 eV at small wave 
vectors resulting from our calculations does not show up in theirs. In agreement with 
experiment they obtain negative dispersion in a certain wave vector range. Thus there 
are similarities and differences between their results and ours. If, however, one takes into 
account that different band structure methods underlie these two independent treatments and 
that relatively minor variances in the energy bands, in the characters of the Bloch states 
and in details of the calculations may lead to important changes in the density fluctuation 
spectra, the differences between the results do not seem too serious to us. 

6. Summary 

We applied our first-principles approach, developed for evaluating correlation functions, 
to the density response of alkali metals. Since we work in the local angular momentum 
representation, the lattice structure is rigorously taken into account, avoiding any truncation 
in reciprocal lattice space. This method is generally applicable to the whole spectrum of 
substances ranging from simple metals to narrow-band transition metals. As a consequence 
of the strength and the repulsive character of the Coulomb interaction, the involved numerics 
require an especially high degree of accuracy. The interesting features of the density 
fluctuation spectra appear at frequencies well above the large-amplitude regimes of the 
polarization functions. To calculate the latter reliably, we need to know the one-particle 
Green functions in real space, including the interstitial regions and within an extended 
energy range. The band structure method used should ensure the fulfilment of the f sum 
rule, as is the case with the KKR. Our calculated KKR data for Na and Cs lead to tolerable 
deviations from this sum rule, decreasing with increasing wave vector. Altogether we feel 
that our results for the density response are trustworthy from a numerical point of view 
and the discussions of the previous sections show that they are interpretable in terms of 
band structure properties. We have demonstrated that the step to implement the theory with 
the lattice structure leads to a significant improvement of RPA-based results over continuum 
models. Our results for Cs show that it is dangerous to consider the alkali metals as 
nearly-free-electron systems when dealing with density correlations, since the properties of 
unoccupied bands may substantially deviate from this behaviour. The light alkali metals 
on the other hand seem to be nearer to this picture and, as our results for Na suggest, RPA 
LDA yields values for the positions and widths of their plasmonic excitations in satisfying 
agreement with experiment. In the case of Cs our calculations reproduce important features 
of the experiment. In significant points they are also in accordance with other theoretical 
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work discussed in the present paper. Remaining differences may be caused by the use of 
different band structure methods and variances in computational details such as the way the 
BZ integrals are performed. They clearly point out the dificulties involved in these kinds 
of calculation. The formalism presented is flexible enough for treating improvements of the 
K matrix and the one-particle Green function beyond the RPA and this should be the aim of 
future applications. 

M Kollwitz and H Winter 

The equation for fq(lmslp'r'; o) may easily be derived from equation (AI). We obtain 

with 

Lumping the quantum numbers (Zms) into one-dimensional index fields, equation (A4) 
can be solved for f,,(lmslp's'; o) by ma@ix inversion. The spatial integrals in equations 
(Al)-(A5) are over the WignerSeitz cells of the corresponding sites, allowing for rigorous 
integrations over the interstitial regions. Inserting fp(1mrlp'r'; o) into equation (AI), we 
obtain fq(pr ,  p's'; o) in full dependence on its space coordinates. 
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